SELF-CONSISTENT MOTION OF GAS HEATED BY POINT-LIKE
ISOTROPIC- SOURCE OF MONOCHROMATIC RADIATION

I, G, Zhidov and V. G. Rogachev UDC 533.6.011

Spherically symmetric motion is considered of an ideal gas with the initial distributioﬁs
u(r, 0) = 0; p(r, 0) = po; e(r, 0) = A/,
where v is mass velocity; p is density; and € is specific energy. For t > 0 one has
v(0, ) = 0; v(r— o0, £) = 0.

These conditions arise, for example, in the case of instantaneous heating of gas by a point-like isotropic
monochromatic source of radiation if the initial heating can be represented by

e(r, 0) = (Eu/!lﬂ"zLPo)e;r/l‘,
where L is the path length; E; is the total radiation energy. For r <« L one has
g(r, 0) = A/r*, A = Ey/4nLy,.

In the above formulation the problem contains only two dimensional parameters, A and pg, from which it
. is impossible to work out the parameter of the length dimension. Therefore, the motion of the gas for t > 0 is
self-consistent (self-consistency of the first kind), i

Of course, the flows are self-consistent for any power formula €(r, 0} = Ar™®, However, the values n = 3
are physically not feasible, since they correspond to the case of infinite energy in a sphere of finite radius,

If the notation of [1] are adopted, then the self-consistent variable can be written as
b= piA L2, )

Following [1], the dimensionless variables V, R, and P are introduced by means of
v=(r't)V; p.= poR; p = po(r*/t)P, 2)

where p is pressure,
By substituting (1) and (2) in the equations of gasdynamics, one obtains
A2 — V)V - P'/RI = V* —V = 2P/R;
AM—V (12 —V)R'/R] = 3V; (3)
M12 —=WIP /P —yR'/R] =2V — 2
for the spherical-symmetry case having introduced the variable Z by means of

Z= vyP/R = y(p'p)/r*, 4)
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TABLE 1

. wo v v e e e | R
1,1 1,284 0,0945 0,376 0,0437 0,1664 1,076 3,512
1,2 1,536 0,0921 0,357 0,0427 1,1585 1,074 3,056
1,4 1,847 0,0886 0,323 0,0412 0,1442 1,0711 2,483
1,6667 2,133 0,0828 0,287 0,0387 0,1294 1,0672 2,086

where v is the adiabatic exponent; one obtains from (3) the differential equations for Z(V),

iz Z{;z V—1+3(0—17] (! —T‘)z—w—n V- _%)} _[z<v—§j+—ji~ w—n] - -
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Bearing in mind the character of the initial conditions, it is assumed that the flow contains a shock wave.
To the shock front r*, whichis propagated over the heated gas in motion, thereis associated a specific value of
A*, which depends on v, namely,

() = A*AVSY/L, (6)

The parameters at the front of the shock wave are denoted below by an asterisk,

One obtains an asymptotic solution of the system of equations (3) for A — « by assuming that g— py, v—
0 (that is, R—1, V- 0)
V =2y — 1)/ + (3 — D6y + 22)/30% P = (y — 1) + (y — 1)2(y + 2)/28;
R =1+ (y —1)/A* + 5(y — 1)2(3y + 14)/622,

where the expansion terms ~ A~!? have been neglected. For A =0
V =1/3y 4+ [(3y — 1)(3y — 2)*/54y*(15y — 4)1C./C,- MET60M/Bv—2);

P = CJ/x + [(3y — 1)(3y — 2)/99*(2 -+ 6y)1C,A8/Gv—2);

6 _ CZ 846y
Re=C 2 o Wy 2By —1) By —2) 2 52
2 T4+ G ’

where C; and C, are constants which can only be determined by solving the problem completely. However, one
can find the value of Z(V), which does not contain Cy and Gy,

3y —2) (2 6% 2 (157 — r__i_)
g Gr—n@Ey—2p Gr—aeron+orun—o(r e
1

5470 (157 — 4) (V -~ i) 8y —2) (2 6y) L 6y (157 - 2) (V —1
3‘\’ - 3~.7

0

The flow parameters downstream behind the shock wave and upstream in front of it are related by the
relations on the nonremovable discontinuity,

»_ [y—1\? 1 * 1y, 2Zf 2y . 142 "
7= (] gty L - ) 5 [ - ) - ) ®
1) |
B (Vz——2-)=31 (V1 _-;—)

where the subscript 1 corresponds to the upstream and 2 to the downstream parameters.
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The functions R(A), V{A), P(0) for any values of A can only be determined by numerical integration of
the ordinary differential equations (3). For some 3y >1 the values of R(py), V{A;), P(py) are computed by
using the asymptotic formulas (6). Using these values as initial conditions one now integrates numerically
the system of equations (3) in the domain A < Ay, and one obtains the functions R;(a), Vi(A), P;(A); then from
the formula (4) the value Z;(7) is obtained. Substituting Z,(}) and V;(3) in the relations (8), one obtains the
function Z;(VZ) and for some value V = V3 the value of Z, (Vg),is computed by means of the formula (7). [The
relation (7) holds for » < 1, in other words, for Vg—l/S'y «1,] Using ZQ(Vg) as the initial value for the differ-
ential equation (5), one integrates the latter in the domain V, > V), and one obtains Z7 (V,). From the relation

25 (V. (1) = 23 (Vy)
one can determine V; and Zz*.,

Employing the numerical functions Ry(A), Vi(A), P;(A) and the conditions (8) at the front of the shock wave
one finds tlie values of Ax, R}, V], Pft R, and P,. The integration of (3) for A <X* with the initial conditions
R,A%) = Ry, PQ(P\*) = P2*~ Vg()\.*) = Vz* yields the values Ry()), V,(A), Py(A) downstream from the shock wave,

The values A; and V) have been chosen on the basis of the requirements of the relative error in the com-
putation of the parameters in front of the shock wave as ~ 1074-1073, In the calculations the values a; = 4, V§ =
1/3y + 0.0025.

In the Table 1 the computation results are given of the parameters at the front of the shock wave for four
different values of 4. The profiles of density, velocity, and pressure are shown in Figs. 1-3 (curve 1 corre-
spondsto y=1.1; 2, toy =1.2; 3, toy =1.4; and 4, to y = 1.6667). _

In view of a weak dependence of p/pJ (r/r*) and v/v; (r/T® on v (in the range y = 1,1-5/3) these func-
tions are shown in Figs. 2 and 3 only for v = 1.1; 5/3.

The limiting compression is not reached at the shock front propagated over heated gas in motion, For the
problem under consideration when y = 5/3 the compreasion p;‘ / p1* =1.95 takes place, whereas the limiting

value amounts to 4. The velocity profile downstream from the shock wave is nearly linear. For a finite tand-
r — 0 one has p(r) — 0, p(r) — const.

The region of applicability of the obtained solution is bounded by the conditions

r L andr < VE /4daLpge,. (9)

If the first condition is satisfied, one can represent the initial heating in the form of specific energy being a

power of the radius; if the second condition is fulfilled, the intrinsic energy €, of the cold gas can be ignored
as compared with the heating energy of the gas by radiation. The self-consistent solution is valid as long as
the front radius of the shock wave satisfies the relations (8).
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EXPERIMENTAL STUDY OF STRONG SHOCK PROPAGATION IN
A CHANNEL

A. A, Kon'kov and A, I. Sokolov UDC 533.6.011.72

The widespread use of shock tubes in laboratory practice is well known, However, despite exist-
ing information [1] about shock-wave velocities of ~ 100 km/sec, experimental data on the size
of the shock-heated region behind the shock front are confined to the Mach numbers M = 10 [2],
Theoretical data do not go beyond the limit of this range except for air where calculations were
performed up to M = 20 [3, 4], Behind strong shocks, the effects resulting from viscosity, ther-
mal conductivity, and radiation of the medium should lead to serious deviation of the actual flow
from the idealized pattern for uniform motion of a piston in a channel filled with a nonviscous,
thermally nonconducting, and nonradiating medium, It is therefore practical to make an experi~
mental study of the behavior of density and of the size of the shock-heated region behind a shock
frontpropagating down the channel of a shock tube that is capable of producing velocities up to 8
km/sec, .

The shock tube used in the experiments was similar to the one described in [5], but in these experiments
the internal cross section of the channel in the low-pressure chamber was a 27 x 27 mm?. An additional sec-~
tion of greater cross section was installed beyond the viewing ports so that reflection of the shock wave from
the end did not disturb the flow patterns, Argon wasused as the test gas,

The study was based on the interferometric method for determination of density using the Rozhdestven-
skii system [6] in which a Mach—Zender interferometer was crossed with a spectrograph, This system was
supplemented with a time sweep similar to that used in [7]. The experimental arrangement is shown in Fig, 1.
In the figure, I-IV are interferometer mirrors; L; and L, are lenses; 6 is an ISP~51 spectrograph; 7 and 8 are
a driven photodetector and its supply unit; 5 and 4 are the light source and its supply unit.

A pulsed discharge in a capillary was used as the probing light source 5; the energy distribution in its
spectrum corresponded to the distribution in a black-body spectrum at a temperature of approximately 40,000°K,
A description of this source is given in [8],

The system for velocity measurement is shown schematically in Fig, 1. Here Dy, D,, D3, D,, and D; are
ionization detectors with the distances D;D,, DyD3, D;D;, and DD being respectively, 100, 300, 80, and 240 mm;
1 is a unit which produces an electrical impulse after shorting of the interelectrode gaps of the ionization detec-
tors by plasma; 2 is an S1-17 oscilloscope; 3 is a G-4-18A sine-wave generator; 4 is a synchronization unit,

The driven photodetector consisted of an objective, a 12-sided prism with mirror faces, and a film cas-
sette (Isopankhrom-13 film was ususally used)., The rate of prism rotation during an experiment was 375 rps,
which made it possible to obtain a time resolution of about 0.3 usec. Since high-order interference was used,
nearly vertical bands were produced on the film, When one of the arms of the interferometer was crossed by
a wave or by the contact region, a shift in the interference pattern occurred. Detection of these points in time
on the film made it possible to determine the distance between the shock wave and the contact region,
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